Wales' Natural Resources: Resilience of Ecosystems and Biodiversity

Prof Jack Cosby NERC's Centre for Ecology & Hydrology Bangor

A substantial challenge!!

Wales Biodiversity Partnership Conference 2015 9th - 10th September, Aberystwyth University

PARTNERIAETH BIOAMRYWIAETH CYMRU WALES BIODIVERSITY PARTNERSHIP

Overview

- Improving resilience of ecosystems and biodiversity is a substantial challenge.
- Explore collective efforts to shape and effect change to improve biodiversity and ecosystems in Wales,
- Examine the implications and opportunities contained in the Environment Bill and the Well-being of Future Generations Act.

Big part of the challenge: Resilience

* * * * *

PARTNERIAETH BIOAMRYWIAETH CYMRU WALES BIODIVERSITY PARTNERSHIP

Prelude:

Why Resilience in Wales?

Definitions of Resilience.

A brief history of Resilience.

Set some Resilience challenges for the conference?

Why Resilience: Environment (Wales) Bill

Environment (Wales) Bill Putting in place a modern statutory process to plan and manage our natural resources in a joined up and sustainable way

Biodiversity and Resilience of Ecosystems Duty

Background

Biodiversity underpins our ecosystems. The more biodiversity we have, the **more resilient our ecosystems** will become,.....

As part of the Welsh Government's commitment to reversing the decline in biodiversity in Wales and **increasing the resilience of our ecosystems**, the Environment (Wales) Bill will introduce a new biodiversity duty, which will also highlight biodiversity as an essential component of **ecosystem resilience**.

Why Resilience: Well-being of Future Generations (Wales) Bill

Well-being of Future Generations (Wales) Bill

A Resilient Wales

Description of Goal:

A nation which maintains and enhances a biodiverse natural environment with healthy functioning ecosystems that support social, economic and **ecological resilience** and the capacity to adapt to change (for example climate change).

What is Resilience?

- The ability to recover quickly from depression or discouragement
- The ability to recover quickly from illness, change, or misfortune
- Strength of character
- An act of springing back
- The property of a material that enables it to resume its original shape or position after being bent, stretched, or compressed

Resilience The Courage to Come Back

"Combining Strengths to Thrive"

What is Resilience?

the ability to bounce back when face with stress or pressure.

Resilience The Courage to Come Back

"Combining Strengths to Thrive"

What is Ecosystem Resilience?

Ecosystems

- Complex systems including adaptive agents, selforganized, self-similar over time.
- Resilience is one of myriads of stability concepts in ecology.

What exactly "is" resilience? Wrong question! What, exactly, do we "mean" by resilience?

- Resilience of what?
- In response to what?
- Perceived by whom?

Robert May

- 1973 Reprinted in 2001
- Cited more than 1600 times
- Lotka-Volterra plus linear stability analysis (plus brilliant mind)
- Until about 2000, the most frequently used stability concept in Theoretical Ecology
- Why so successful?

STABILITY AND COMPLEXITY IN MODEL ECOSYSTEMS

WITH A NEW INTRODUCTION BY THE AUTHOR

robert m. MAY

Robert May

Proxy science (model ecosystems)

- Intellectually appealing and thought-provoking
- "Success" in terms of capturing key features of real systems depends on quality of those proxies
- "Engineering Resilience"

NATURAL

/IRONMENT

SEARCH COUNCIL

C.S. (Buzz) Holling

- Not all ecologists were happy with the "engineers" notion of resilience
- Holling's review from 1973 introduced a different notion of resilience, that intrigued generations of ecologists,
- But never took ground in Theoretical Ecology

Educe by Lance H. Gunderson Craig R. Allen and C. S. Holling

Foundations

of Ecological

Resilience

ARTICLE 1

Resilience and Stability of Ecological Systems

C. S. HOLLING

C.S. (Buzz) Holling

"Resilience determines the persistence of relationships within a system and is a measure of the ability of these systems to absorb changes of state variables, driving variables, and parameters, and still persist. In this definition resilience is the property of the system and persistence or probability of extinction is the result."

"Ecological Resilience"

In 1999, Holling and a small group of other scientists founded the "Resilience Alliance" (<u>www.resalliance.org</u>):

The Resilience Alliance is a research organization comprised of scientists and practitioners from many disciplines who collaborate to explore the dynamics of **social-ecological systems**. The body of knowledge developed by the RA, encompasses key concepts of **resilience, adaptability and transformability** and provides a foundation for **sustainable development policy and practice**.

research on resilience in social-ecological systems a basis for sustainability

Volker Grimm's 1996 review

Oecologia (1997) 109:323-334

© Springer-Verlag 1997

Volker Grimm · Christian Wissel

Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion

Received: 4 June 1996 / Accepted: 5 November 1996

Abstract We present an inventory and analysis of discussions of ecological stability, considering 163 definitions of 70 different stability concepts. Our aim is to derive a strategy that can help to dispel the existing "confusion of tongues" on the subject of "stability" and prevent its future recurrence. The strategy consists of three questions that should be kept in mind when communicating about stability properties. These three questions should overcome the three main sources of confusion in termi-

Introduction

Human concepts are signposts through the confusing complexity of nature. We need them to narrow down the never-ending tally of possible questions that we empirically or theoretically ask of nature. Without concepts it is impossible to work scientifically. The price for this, however, is that the concepts determine the ways and methods in which we perceive nature. Critical examina-

Centre for Ecology & Hydrology Natural environment research council

Volker Grimm's 1996 review

Table 1A list of stabilityterms to be found in the litera-
ture. Adjectives (e.g. stable,
persistent) are changed into
substantives. The numbers in
parentheses denote the number
of definitions to be found for
each expression. Terms marked
with an asterisk (*) are defined
in the original German. The
terms are classified as: (1) Con-
ventional terms (*first column*);
(2) newly invented terms (*sec-
ond column*); (3) "Stability",
plus an adjective (*third column*)

Stability (25) Persistence (15) Constancy (5) Domain of attraction (2) Ecological stability (6) Elasticity (8) Resilience (17) Resistance (9)

Amplitude (4) Cyclicity Damping Dynamic boundedness Dynamic fragility (2) Dynamic robustness (3) Ecological lability Ecosystem health Existence Hysteresis (2) Inertia (4) Malleability (2) Maturity Mutual invasibility Permanence Persistence at fixed densities Persistence in the wide sense Recurrence Regulation Repellor Resiliency (2) Responsiveness Semi-stable attractor Sensitivity (2) Stable attractor Strictly persistent Strongly persistent Vulnerability (2) Weakly persistent

Attractor block

Adjustment [stabilitv] Anthropogenic stability Biomass stability c-Stability* Connective stability Cyclical stability D-stability Essential stability Functional stability Global stability k-Stabilitv* Lagrange stability Local stability Mathematical stability Multi-stabilitv* Natural stability Neutral stability o-Stability* Perceived stability Practical stability **Oualitative** stability Relative stability r-Stability* Resistance stability (2) Species deletion stability Structural stability (2) t-Stability* Temporal stability Terminal stability Total stability Trajectory stability Ultra-stability*

Volker Grimm's 1996 review

Essentially, there are only six (three) different stability properties

- 1. Constancy: Staying essentially unchanged
- 2. <u>Persistence</u>: Persistence through time of an ecological system
- 3. <u>Resistance:</u> Staying essentially unchanged despite the presence of **disturbances**
- 4. <u>Resilience</u>: Returning to the reference state (or dynamics) after a temporary **disturbance**
- 5. Elasticity: Speed of return to the reference state (or dynamics) after a temporary **disturbance**
- 6. Domain of attraction: The whole of states from which the reference state (or dynamics) can be reached again after a temporary **disturbance**

So how do we view resilience now, 40 years after May and Holling?

What are the pressures?

Stockholm Resilience Centre

Sustainability Science for Biosphere Stewardship

Four of nine planetary boundaries have now been crossed as a result of human activity, says an international team of 18 researchers in the journal Science:

- climate change,
- loss of biosphere integrity,
- land-system change,
- altered biogeochemical cycles (N&P).

(Steffen et. al, 16 January 2015, Science)

How do pressures act?

Pulse (episodic) vs Press (chronic) Pressures

What do we want Wales' natural resources to do?

"Bend not break"

Be able to recover their function (so we receive the benefits) when exposed to:

Chronic pressures

- Warming
- Air pollution
- Land Management
- Episodic pressures
 - Pests and disease
 - Droughts and Storms

i.e. be resilient (& sustainable)

Conference Challenge?

Wales Biodiversity Partnership Conference 2015 9th - 10th September, Aberystwyth University

What are the methods and metrics for quantifying Resilience?

"Make everything as simple as possible, but not simpler"

If we knew what we were doing, it wouldn't be called research.

Conference Challenge?

Wales Biodiversity Partnership Conference 2015 9th - 10th September, Aberystwyth University

Ecosystem Services can be delivered at high rates but with the underlying Natural Capital being eroded i.e. we are not using them sustainably

Living off your savings to pay your bills -Similar analogy to the 'illusion' of GDP

How do we know we've got it right?

GENUINE PROGRESS FLATTENS

World GDP has soared since 1950, but a metric for life satisfaction called GPI has not.

People and natural resources are highly inter-connected

How can we monitor Wales to reflect this complexity and interdependence?

GMEP data and modelling work have the potential to deliver resilience metrics around 4 key issues

GMEP: An example of collaborative working involving 17 organisations and > 100 scientists

Current (and Future) Challenges

- Little consensus in scientific world on resilience metrics
 - Connectivity can be undesirable during disease outbreaks
 - Extent and diversity can be mutually exclusive
- Targets will be challenging and potentially impossible
- In the meantime:
 - Actions to improve condition of our Natural Resources
 - Monitor Natural Resources to see if successful as we go along as evidence base is incomplete

Combine with new sensor technologies to develop early warnings (e.g the Environmental Internet of Things)

The Environmental IOT

Understanding & Managing the Natural Environment through Internet of Things Technology

A substantial challenge!!

Wales Biodiversity Partnership Conference 2015 9th - 10th September, Aberystwyth University

PARTNERIAETH BIOAMRYWIAETH CYMRU WALES BIODIVERSITY PARTNERSHIP

Overview

- Improving resilience of ecosystems and biodiversity is a substantial challenge.
- Explore collective efforts to shape and effect change to improve biodiversity and ecosystems in Wales,
- Examine the implications and opportunities contained in the Environment Bill and the Well-being of Future Generations Act.

Wales Biodiversity Partnership Conference 2015 9th - 10th September, Aberystwyth University

jaccos@ceh.ac.uk

Acknowledgements: Prof Bridget Emmett Prof Volker Grimm

